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Localization properties of groups of eigenstates in chaotic systems
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In this paper we study in detail the localized wave functions defined in Phys. Rev76e11613(1994), in
connection with the scarring effect of unstable periodic orbits in highly chaotic Hamiltonian system. These
functions appear highly localized not only along periodic orbits but also on the associated manifolds. More-
over, they show in phase space the hyperbolic structure in the vicinity of the orbit, something that translates in
configuration space into the structure induced by the corresponding self-focal points. On the other hand, the-
guantum dynamics of these functions are also studied. Our results indicate that the probability density first
evolves along the unstable manifold emanating from the periodic orbit, and localizes temporarily afterwards on
only a few, short related periodic orbits. We believe that this type of study can provide some keys to disen-
tangle the complexity associated with the quantum mechanics of these kind of systems, which permits the
construction of a simple explanation in terms of the dynamics of a few classical structures.
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[. INTRODUCTION Another point worth considering is the importance and/or
convenience of using wave functions that are “dynamically
The investigation of the quantum manifestations of clas-adapted” in this type of studies. By “dynamically adapted”
sical chaos is at present a very active field of reseftgh [8] we mean structures that contain information not only
The relationship between quantum dynamics and classic@POut the PO, but also about the linearized dynamics around
invariants, mainly periodic orbité?0) and their associated the orbit. When considered in phase space, these structures

manifolds, is not satisfactorily understood \&|. In this appear not only localized over the PO, but are also spread

. . . ver the corresponding manifolds.
resp_ect, an |mportant achievement would be to d|sgntang|% The construcl?cion ofgfunctions of this kind can be carried
the time evolution of a quantum system whose classical ang;

log is chaoti laining this d o £ classi ut using different approaches. In RE®] the necessary in-
og is chaotic, explaining this dynamics in terms of classicali, i ation is obtained by Fourier transforming the short-time

structures. , exact-quantum dynamics, so that wave functions averaged
Fifteen years ago, a seminal step was done by HEBBr  gyer the PO path are obtained. Kaplan and Héllé} used a
who considered the evolution of a wave packet localized oryym of coherent Gaussian wave packets centered along the
an unstable PO. He found that the dynamics in the short-timeQ to obtain the desired function. Finally, Vergini and Carlo
limit are controlled by the motion around the orbit and its[11] constructed semiclassically resonances along POs with
Lyapunov exponent and is well understood in terms of semiminimum energy dispersion.
classical expressior8,4]. In spite of the differences existing among these functions,
For longer times the dynamical mixing induced by thethey are all suitable to efficiently investigate the quantum
chaotic behavior of the motion makes the situation moremanifestations of the classical phase-space complexity in
complicated, and one single orbit and the linearized dynamelassically chaotic systems.
ics around it is not enough to account for the evolution of the The purpose of this paper is threefold. First, we focus on
wave packet. Some time later, Tomsovic and He[lg]  the analysis of the topological characteristics., distribu-
showed that even for those long times, for which classication of quantum probabilityin phase space of this type of
fine structure had developed on a scale much smallerfthan wave functions highly localized on an unstable PO. Second,
the semiclassical propagation of the packet can be carried ogpecial attention will be paid to the relationship existing be-
with good precision, by computing the corresponding corretween the quantum dynamics of this function and that of
lation functionC(t) as a sum of contributions of the ho- other classical POs of the system located in their vicinity, in
moclinic excursions of the PO. This procedure has neverthearder to explore the existence of dynamical connections and
less some drawbacks, since, for example, the number aictive interplay between them. Finally, another interesting
orbits that is necessary to include in the calculation to obtairaspect of these functions is their revivals, that take place in
converged results grows dramatically with time. some cases for a surprisingly large number of cycles without
A different approach, that maintains an interpretation ofshowing any visible sign of dispersi¢t2]. This fact, which
wave mechanics based on more simple classical objects refs particularly surprising in view of the highly chaotic char-
resented by POs has been presented elseviBefe In this  acter of the problem that will be considered, is due to the
theory [6] all quantum information of a bounded chaotic special dynamical properties of these functions. Summariz-
Hamiltonian system can be obtained using a number of POimg, it should be stressed that the most important result of our
that grows only linearly with the Heisenberg time. work is that, proceeding in this way, only a few short POs
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are necessary to adequately explain the quantum dynamics of " ,
this type of systems. |p(1)=e" M p(0))=2 [n)(n|(0))e Et,  (4)
For our study we will use localized functions as defined in A
Ref. [9], applying them to the study of the dynamics in the
Bunimovich stadium billiard13], a system that is known to
behave ergodically from the classical point of view. ;
The organization of the paper is as follows. In Sec. Il weSC"’I‘QIIng n:fthoils]' hing "y h
describe in detail how the method of RE9] can be used to h _ega.r ng t“ﬁ STOOt 'ng u_nc|t| (1) one a]:c‘ many
construct the desired wave functions, highly localized on aoices, 1.e., at,” exponential or Gau_ssuan unctions,
hich render sinX)/x, Lorentzian or Gaussian-type line en-

given unstable PO and their associated manifolds. Numeric lones. respectivelv. In our case we use the Gaussian deca
results concerning the topological characteristics, both i €10PES, respectively. u we ussi y

configuration and phase space, of these functions and the 272

corresponding time evolution will be presented and analyzed Wo(t)= € )
in Secs. Il and IV, respectively. Finally, the main conclu- T T

sions derived from our work are presented in Sec. V.

where{E,} is the corresponding set of eigenvalues. In our
case the billiard eigenstates have been computed using the

for which the spectrum takes the form
Il. CONSTRUCTING LOCALIZED WAVE FUNCTIONS

In this section we briefly describe the metH@d that will | ()= o > [(n|$(0))|%exp[~TX(E—~En)?2]. (6)
be used to construct states initially located on a given PO and (2m) Y2 %5
the corresponding manifolds. The procedure has been previ-
ously applied to the analysis of the scarring effect of unstable The center of the initial wave packet defined in E8)
POs in chaotic systend4], as well as to the study of the will follow for some time the classical PO on which it was
guantum dynamics that takes place beyond the first recutaunched, with the dispersion rate evolving according to the
rence of the corresponding moti¢n]. As it will be shown,  Lyapunov exponent of the orkjig].
these initial states can be used as an important tool to disen- In a second stef®], a wave function highly scarred by the
tangle the complexity of the full quantum dynamics takingPO can be constructed very efficiently by considering the
place in the area of influence of a given PO, making use oéverage of ¢(t)) along the dynamics generated by the PO
the associated classical mechanics as a guide in the procesdsiring a given amount of time, usually taken of the order of
Initially, the method considers a wave functid(0)), the PO period. Let us remark the importance of this last
well localized in phase space in the vicinity of a given PO.requirement, since if the packet is allowed to evolve for a
The corresponding time evolution can be followed by meansery long time, so that due to the chaotic character of the

of the associated autocorrelation function, dynamics it has the opportunity to sample all the available
I phase space, just tlieomplicated eigenfunctions of the sys-
C(t)=((0)|p(1))=(p(0)|e” " $(0)). (1)  tem will be obtained. The corresponding expression for the

_ _ localized wave function corresponding to an enefgy(usu-
Recurrences inC(t) are known to determine the low- ally taken as the center of one of the bands appearing in the
resolution structure of the corresponding speptia low-resolution spectrum generated hy(0))) reads as fol-
lows:

1 (=~ .
I+(E)= Ef_xdtWT(t)C(t)elEt- )

E 1 ” iE ot
[pFo)y=5—| _dteFowe(t)[g(t)
and are the origin of the scarring effect, as first discussed in o

[3]. W+(t) is a window function to take into account possible 1

different resolutions if(E). =0 > [n){n|$(0)) exp[— TA(Ey— En)%/2].
A widely spread choice fof¢(0)) is a minimun uncer- (27r)~¢ n

tainty harmonic oscillator coherent state is set equal to 1 (7)

throughout this paper
14 0un Phase-space representations for the wave functions de-
1 —(rj=ry) scribed in this section can be constructed in a number of
Gropo(r) =11 (_z) exp{ different ways. In this paper we will follow the procedure
described in Ref[16], which relies on the use of normal
Xexp[iPJQ(r j—r?)], (3)  derivatives of the wave functions evaluated at the boundary
of the billiard. On this boundary, Birkhoff coordinatgt7]
where ¢°,P°) represents the coordinates and conjugate motq,p) are used to define both classical and quantal Poincare
menta of a suitable phase space point along the selected PSurfaces of section such thqtis the arc-length coordinate,
For bounded systems, the evolution of this packet can bgng p:p.f/|p| is the fraction of tangential momentum. The
followed quite conveniently by projection on a complete setcoherent states necessary to construct this representation
of eigenfunctiongn) of the HamiltonianH, (Husimi functions[18]) are then defined as

j T 20'j2
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This expression corresponds to a boundary wave packet at ©
point (% p°) in the surface of section; representing a bounce
off a given boundary point with a specific tangential momen- © ‘ ‘
tum. Then, for a wave function with normal derivative on the 0 0.05 ' 0.1 0.15
boundary#(q) (extended periodically to the real linethe
corresponding Husimi function is given by FIG. 1. Modulus of the autocorrelation function corresponding
to a symmetrized wave packgtq. (9)] initially centered on the
H (qoy po) = |<Gq0p0| i/f>|2- 9 horizontal periodic orbit of the desymmetrized stadium billiard with
Newman boundary conditions on the axes at an en&rg\3600.
1Il. TOPOLOGICAL CHARACTERISTICS The radius is taken equal to 1, the enclosed al’eaTM, and the
OF THE LOCALIZED WAVE FUNCTIONS mass of the particle 1/2.

The system that we have chosen to study is a particle ofvith approximately the same collisional phase, this giving
mass 1/2 moving in a desymmetrized stadium billiard withrise to the second, more pronounced peak in the autocorre-
Newman boundary conditions on the symmetry ai@sy lation function.
even-even parity wave functions will then be considered  Let us consider next the localization of the wave functions
The radius is taken equal to unity and the enclosed area isobtained with the method described in the previous section
1+ /4. This system is known to exhibit a great degree of[see Eq(7)] for different values of the smoothing time. We
chaoticity, both from the classical and quantal points ofchoosel=0.01, 0.03, 0.06, and 0.1, in order to cover a range
view. of values smaller and greater th@g. The results are shown

In this case, and due to the symmetry of the problemijn Fig. 2, where we present the corresponding squared wave
symmetry adapted initial wave functions should be used; théunctions, Husimi based quantum sufaces of sections, and

corresponding expression being given by the associated portions of the spectra generated [fgg(i®)).
Three comments are in order.
<XvY|¢(0)>:Gxo,yO,Pg,P3+G—xo,yo,—Pg,P3+Gx°,—y0,Pg,—PS In the first place, the wave functions in configuration
space(top tier) appear localized along the PO, presenting a
+Gox0,—y0,-p0,—po+C.C. (100 number of nodesin agrement with the value obtained from

the Bohr-Sommerfeld quantization condition

is obtained by imposing Newman boundary condition at the
symmetry axes. 2

We consider the dynamics dominated by the horizontal k= T
PO, running along the axis withy=0. Accordingly, we use
for our study a symmetry-adapted Gaussian wave packethen applied to the spectral pealsottom tiey. For the
[Eq. (9)] with centers defined by the phase-space poinhorizontal POL=4 and the Maslov index=3.
(x%,y°,P?,P9)=(1,0k,0) and width o=, =1.603k"?, In the second place, and much more importantly, in the
wherek is the usual wave number. The corresponding autofocalized wave functions it is clearly observable the distor-
correlation function for a packet with an energy at the centetion in the structure induced by the self-focal point. A dis-
of E=3600, for which the period of the horizontal PO is cussion of this effect can be found in Rp4]. This is a very
equal toT,=1/30, is shown in Fig. 1. As can be seen, twoimportant point, and is a consequence of the fact that these
main peaks exist d=0.016 and 0.033, respectively, the first functions have been defined in such a way—averaging over
one being substantially lower than the second. After that, théhe motion along the orbit—that they are not only located in
correlation function becomes very complicated. The relativehe right position of configuration space, but contain also
intensity of the two peaks can be easily explained if oneinformation on the dynamics of the system in the vicinity of
takes into account that the initial coherent state that we arthe PO. This is more clearly seen when examining the phase-
using is the sum of two packets, launched with opposite valspace picture of these functions, i.e., middle tier of Fig. 2.
ues of the momentum. The two packets first separate, onehere, it is observed that the probability density do not just
being scattered by the vertical axis and the other by the cirlocalize over the fixed point corresponding to the scarring
cular hard wall of the billiard, so that when they first return orbit, but it is also spread significantly along their manifolds.
to the initial point, at a time roughly equal q/2, they have Finally, this structure over the manifolds changes as the
picked up different phases. This gives rise to the fgstal)  value of T is increased, giving the original packet the oppor-
recurrence peak ihC(t)|. Afterwards, the two components tunity to explore more and more of the dynamics induced by
continue moving, colliding with the circular and vertical the PO. Indeed, we see in Fig. 2 that Tor 0.01, well before
walls, respectively. In this way, when some time latert at the first peak in|C(t)|, the quantum surface of section ap-
=T, they return again close to the initial point, both arrive pear essentially localized on the fixed phase point corre-

v
m+ —

7 11
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FIG. 2. (Top) Localized(squared wave functions calculated using E), (middle) Husimi based quantum Poincaserface of section,
and (bottom) spectra (., as a stick spectrum arig in solid line) for different values of the smoothing tim&; (a) 0.01,(b) 0.03,(c) 0.06,
and(c) 0.1 atEy= 3700, corresponding to the autocorrelation function of Fig. 1. The invariant manifolds of the horizontal periodic orbit have
also been drawn superimposed in the middle pannel.

sponding to the horizontal PO, with just some probabilitysition to the semiclassical limit is considered. For this pur-
sticking out of this region along the manifoldalso plotted pose we have repeated the previous calculations, launching
in the figure. For T=0.03 this latter effect is more pro- the packet from the same point as before but with different
nounced, and the pattern along the linearized part of th¥alues of the energy. The results are shown in Fig. 3. In it we
stable and unstable manifolds is fully developed. At the sam@resent the localized wave functions, Husimi based quantum
time, the corresponding low-resolution spectral envelope§oincaresurfaces of section, and spectra #65=400 and
I+(E) (continuous line in the bottom tipdefine, with in- T =0.1[column (a)], and also forE,=40267 andT=0.01
creasing precision, the clump of eigenstates contributing t6¢0lumn (b)]. These values of the smoothing times corre-
this scaf9]. Past this time, i.e., fof = 0.06, well beyond the spond to the periods of the horizontal PO at the selected

first (true) recurrence of the horizontal PO, the original energies, so that these are compared to those in fbg.2s

packet has had the opportunity to enter into the truly nonlin &N bg seen, the strgcture eXh'b'tEd by these functions is
ssentially the same, if one takes into account the fact that all

ear part of the periodic trajectory, exploring regions of phas _ ) oo S
space far apart from the fixed point, where the dynamicaength feat.“??—‘s scale &S Th's spahng Is the orngn O.f the
flux gets more complicated. However, we see that the ave petter definition of the focalization effect existing in the
aged wave function is well confined on the manifolds, everfonfiguration-space wave functions at higher energies.

following the sharp kinks that they present. This processf Us_lnghGutzwnlerI trgce fO”T“'T‘S'é;m"?r srr;]oothed hwave
continues forT=0.1, value at which the localized wave unction has recently been calculafe®], also showing that

function appears covering practically all these invariantthe invariant hyperbolic classical structure is contained in

structures of phase space. In this case the resolution in gfantum mechanics. In this case no dynamical information

spectra is higher, and the corresponding spectral enveloﬁ’éaS used, with the result that many mdd the order of

define several bands. four in our case. These higherlo 000 states were needed in the summation in order to get

resolution band§7] correspond to the interaction with other the same kind of localization that we are showing in this
POs of longer periods, as will be discussed in the next sed2@per.
tion. The signatures of these longer POs are seen in the CO7 DYNAMICS OF THE LOCALIZED WAVE FUNCTIONS
figuration space plots.

Another aspect of this problem that is worth considering In this section we investigate the dynamics of the local-
is how the process described above is affected when the traired wave functions described in the previous section, with
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FIG. 3. (Top) Localized (squaredl wave functions calculated

using Eq.(7), (middle) Husimi based quantum Poincasarface of
section, andbottom spectra (., as a stick spectrum arig in solid
line) for: (a) E;=400 andT=0.1, and(b) E,=40267 andT
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FIG. 4. Modulus of the autocorrelation function corresponding
to localized wave functions calculated fof@ E,=400 andT
=0.1, and(b) E;=3700 andT=0.03.

=0.01. The invariant manifolds of the horizontal periodic orbit (7)] of Fig. 3@ and Fig. Zb). The results of parta), corre-

have also been drawn superimposed in the middle pannel.

classical invariant structures.

lated using thénonstationarylocalized wave functionfEg.

t=0.0

t=0.042

sponding toEy=400 andT=0.1, show a series of recur-

rences at time intervals approximately equal to 0.38. In each
the purpose of disentangling the complexity of the quantunof them, practically all the initial probability is recovered,

dynamics in the problem that we are considering. As statednd the process shows no evidence of dispersion up to the
in the Introduction, our aim is to provide an explanation oftimes considered in our calculations. This phenomenon has
the quantum dynamics of highly chaotic systems in terms o&lready been discussed in REL2], where Gaussian wave

packets “stretched” along the horizontal PO were used, and
In Fig. 4 we present the autocorrelation function calcu-necessary conditions for the existence of revivals were given.

t=0.084

As indicated before, in our case we use initial functions that

t=0.127 t=0.169

PN, S i /

\
PG

\\\/ /\(,

@3

FIG. 5. Snapshots of the dynamical evolution in phase space of the localized wave function correspondingdp Fige nanifolds of
the horizontal orbit are plotted in solid line. The linearized manifolds of the ofbjig2), (3) and(4) of Fig. 6 are included in white lines
(in the case that the Husimi function is localized on them
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1) (2
3) 4)
q 24m
5) (6) FIG. 7. Fixed points and associated manifolds of some periodic
orbits in Fig. 6. The unstabléhick full line) and stable(thick
dashed lingmanifolds of the horizontal periodic orbit are also rep-
resented.

FIG. 6. Some periodic orbits of the desymmetrized stadium bl|-f|Xed points and associated manifo|dsl Corresponding to
liard related to the horizontal one. See text for details. some short POs related to the horizontal one, have also been
included. These orbits are presented in Fig. 6. For the sake of
are better adapted to the dynamics of the orbit, thus showinglarity, the labeling of the POs was not included in Fig. 5,
an improved revival behavior. In this respect, it is importantbut it can be found in Fig. 7.

to note that, opposed to which it was found [ib2], our In the first three images of Fig. 5 we see how the original
functions show revivals, in this wavelength regime, for anprobability density distribution elongates, stretching along
ample range of energy values and also for other POs. the unstable manifolds of the horizontal PO and contracting

From the quantum-mechanical point of view these recuralong the stable ones. Afterwards, the process continues,
rences are easy to interpret, since they are the result of th@pulating the regions around the fixed points corresponding
beating frequency originated from the tamost exclusive  to orbits(3),(4) and(1),(2) [20], so that at=0.127-0.169 a
eigenstate contribution to the initial packsee spectrum in noticeable accumulation of probability around these points
the bottom part of Fig. 8 On the other hand, at the classical has taken place. Notice also the effect of the flux along the
level, the phenomenon is more difficult to understand. Tostable manifolds of these POs, whichtat0.127 is narrow-
further investigate these recurrences from this point of viewjng the elongated shape of the distribution along some spe-
we show in Fig 5 a series of snapshots in phase space cowific lines, and att=0.169 has split the packet in several
ering the period of time elapsed up to the first recurrence opieces. Att=0.211 this process reaches its maximum, and
| 4F0). Notice that due to the symmetry of the figure we havethe probability remaining in the initial region is practically
only plotted one half of the complete phase space of theero. After this point, the evolution continues in a similar
billiard. To help interpreting this figure, the position of the way with the probability returning gradually to the vicinity

t=0.0 t=0.059 ! ‘ t=0.213

AT

N

t=0.316 t=0.419 t=0.470

0 q 2+m

FIG. 8. Snapshots of the dynamical evolution in phase space of the localized wave function corresponding(b). Hige 2nanifolds
of the horizontal orbit are plotted in solid line. The linearized manifolds of the ofbjtand (6) of Fig. 6 are included in white lines &t
=0.213.

066220-6



LOCALIZATION PROPERTIES OF GROUPSP. .. PHYSICAL REVIEW E 63 066220

of the initial point, although obviously this time following a Refs.[6,7], based on the use of special functions well local-
path going along the stable manifolds. This second half ofzed on a few POs and its manifolds, the number of which
the dynamics takes place following the same series of intergrows only linearly withT,,. To construct these localized
mediate steps. functions we have used the method described in F&f.

In Fig. 4(b) the autocorrelation function for the initial based on the dynamics of a coherent wave packet averaged
state of Fig. 2) is shown. In this case the recurrence patternalong a given PO and its neighborhood.
is much more complex, but it is nevertheless noticeable that In this paper we have studied in detail some important
the existence of a fairly good number of recurrences in whiclcharacteristics and properties of these nonstationary-
the overlap with the initial distribution is greater than 50%. scarred functions in the case of the horizontal PO in the
The difference with the example presented in Figg4s  desymmetrized Bunimovich stadium billiard, a paradigmatic
clear. In this case, the initial wave function is formed by aexample of chaos. In particular, we have considered how the
substantially greater number of contributidsse the associ- localization properties, both in configuration and phase
ated spectrum at the bottom of Figbp], and then the prob- space, of these functions calculated at energigslose to
ability that all of them get in phase is much smaller. Thethe Bohr-Sommerfeld quantization conditions vary with the
corresponding evolution in phase space is presented, up Bveraging timeT. Our results show that the probability den-
the first big recurrence dt=0.47, in Fig. 8. At this higher sity in phase space extends along the manifolds of the scar-
energy we see that the mechanism for the dispersion of theng PO, even when the associated dynamics have left the
probability density is practically the same, although therdinear regime. In the second place, the transition to the semi-
exist certain differences worth commenting. In the firstclassical limit has also been investigated by simultaneously
place, the time scale for the dispersion is obviously fasterchangingE, andT. As it takes place, all length features get
i.e., compare the extent of the evolution in the first snapshadbetter defined, for example, the focal points corresponding to
at t=0.059 with the third one at=0.127 of Fig. 5. In the the hyperbolic structure around the fixed point. Finally, we
second place, the probability distribution appears in this caskave also studied the dynamics of these nonstationary wave
much more localized on the participating invariant classicafunctions. When the corresponding probability density in
structures for all values of time considered. Finally, at certairphase space is followed a dispersion along the manifolds is
values oft, the probability shows peaks that localize on newobserved. In this process a building up of probability peaks
POs, not important for the dynamical evolutionEj=400 takes place on a few POs related to the original ¢he
shown in Fig. 5. For example, at=0.213 the probability horizontal PO in our cage The recurrences in the corre-
density localizes on orbit) and(6) of Fig. 6. This effectis  sponding autocorrelation function can be very important, and
not unexpected, since it is reasonable to admit that as wee have even shown one example in which they are particu-
increase the energy, going towards the semiclassical limifarly pronounced.
more POs are necessary to explain the quantum dynamics of To conclude, we think that this work provides valuable
our system, as discussed in Ri]. information that can help in the disentanglement of the quan-

tum mechanics of very chaotic Hamiltonian systems in terms

of simple classical structures.
V. SUMMARY AND CONCLUSIONS

The introduction of Gutzwiller's trace formulg2] pro-
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