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Localization properties of groups of eigenstates in chaotic systems
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In this paper we study in detail the localized wave functions defined in Phys. Rev. Lett.76, 1613~1994!, in
connection with the scarring effect of unstable periodic orbits in highly chaotic Hamiltonian system. These
functions appear highly localized not only along periodic orbits but also on the associated manifolds. More-
over, they show in phase space the hyperbolic structure in the vicinity of the orbit, something that translates in
configuration space into the structure induced by the corresponding self-focal points. On the other hand, the-
quantum dynamics of these functions are also studied. Our results indicate that the probability density first
evolves along the unstable manifold emanating from the periodic orbit, and localizes temporarily afterwards on
only a few, short related periodic orbits. We believe that this type of study can provide some keys to disen-
tangle the complexity associated with the quantum mechanics of these kind of systems, which permits the
construction of a simple explanation in terms of the dynamics of a few classical structures.
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I. INTRODUCTION

The investigation of the quantum manifestations of cl
sical chaos is at present a very active field of research@1#.
The relationship between quantum dynamics and class
invariants, mainly periodic orbits~PO! and their associated
manifolds, is not satisfactorily understood yet@2#. In this
respect, an important achievement would be to disenta
the time evolution of a quantum system whose classical a
log is chaotic, explaining this dynamics in terms of classi
structures.

Fifteen years ago, a seminal step was done by Heller@3#,
who considered the evolution of a wave packet localized
an unstable PO. He found that the dynamics in the short-t
limit are controlled by the motion around the orbit and
Lyapunov exponent and is well understood in terms of se
classical expressions@3,4#.

For longer times the dynamical mixing induced by t
chaotic behavior of the motion makes the situation m
complicated, and one single orbit and the linearized dyna
ics around it is not enough to account for the evolution of
wave packet. Some time later, Tomsovic and Heller@5#
showed that even for those long times, for which class
fine structure had developed on a scale much smaller tha\,
the semiclassical propagation of the packet can be carried
with good precision, by computing the corresponding cor
lation functionCscl(t) as a sum of contributions of the ho
moclinic excursions of the PO. This procedure has never
less some drawbacks, since, for example, the numbe
orbits that is necessary to include in the calculation to ob
converged results grows dramatically with time.

A different approach, that maintains an interpretation
wave mechanics based on more simple classical objects
resented by POs has been presented elsewhere@6,7#. In this
theory @6# all quantum information of a bounded chaot
Hamiltonian system can be obtained using a number of P
that grows only linearly with the Heisenberg time.
1063-651X/2001/63~6!/066220~8!/$20.00 63 0662
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Another point worth considering is the importance and
convenience of using wave functions that are ‘‘dynamica
adapted’’ in this type of studies. By ‘‘dynamically adapted
@8# we mean structures that contain information not on
about the PO, but also about the linearized dynamics aro
the orbit. When considered in phase space, these struc
appear not only localized over the PO, but are also spr
over the corresponding manifolds.

The construction of functions of this kind can be carri
out using different approaches. In Ref.@9# the necessary in-
formation is obtained by Fourier transforming the short-tim
exact-quantum dynamics, so that wave functions avera
over the PO path are obtained. Kaplan and Heller@10# used a
sum of coherent Gaussian wave packets centered along
PO to obtain the desired function. Finally, Vergini and Ca
@11# constructed semiclassically resonances along POs
minimum energy dispersion.

In spite of the differences existing among these functio
they are all suitable to efficiently investigate the quantu
manifestations of the classical phase-space complexity
classically chaotic systems.

The purpose of this paper is threefold. First, we focus
the analysis of the topological characteristics~i.e., distribu-
tion of quantum probability! in phase space of this type o
wave functions highly localized on an unstable PO. Seco
special attention will be paid to the relationship existing b
tween the quantum dynamics of this function and that
other classical POs of the system located in their vicinity,
order to explore the existence of dynamical connections
active interplay between them. Finally, another interest
aspect of these functions is their revivals, that take place
some cases for a surprisingly large number of cycles with
showing any visible sign of dispersion@12#. This fact, which
is particularly surprising in view of the highly chaotic cha
acter of the problem that will be considered, is due to
special dynamical properties of these functions. Summa
ing, it should be stressed that the most important result of
work is that, proceeding in this way, only a few short PO
©2001 The American Physical Society20-1
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are necessary to adequately explain the quantum dynami
this type of systems.

For our study we will use localized functions as defined
Ref. @9#, applying them to the study of the dynamics in t
Bunimovich stadium billiard@13#, a system that is known to
behave ergodically from the classical point of view.

The organization of the paper is as follows. In Sec. II
describe in detail how the method of Ref.@9# can be used to
construct the desired wave functions, highly localized o
given unstable PO and their associated manifolds. Nume
results concerning the topological characteristics, both
configuration and phase space, of these functions and
corresponding time evolution will be presented and analy
in Secs. III and IV, respectively. Finally, the main concl
sions derived from our work are presented in Sec. V.

II. CONSTRUCTING LOCALIZED WAVE FUNCTIONS

In this section we briefly describe the method@9# that will
be used to construct states initially located on a given PO
the corresponding manifolds. The procedure has been p
ously applied to the analysis of the scarring effect of unsta
POs in chaotic systems@14#, as well as to the study of th
quantum dynamics that takes place beyond the first re
rence of the corresponding motion@7#. As it will be shown,
these initial states can be used as an important tool to di
tangle the complexity of the full quantum dynamics taki
place in the area of influence of a given PO, making use
the associated classical mechanics as a guide in the pro

Initially, the method considers a wave function,uf(0)&,
well localized in phase space in the vicinity of a given P
The corresponding time evolution can be followed by me
of the associated autocorrelation function,

C~ t !5^f~0!uf~ t !&5^f~0!ue2 iĤ tuf~0!&. ~1!

Recurrences inC(t) are known to determine the low
resolution structure of the corresponding spectra@4#,

I T~E!5
1

2pE2`

`

dt WT~ t !C~ t !eiEt, ~2!

and are the origin of the scarring effect, as first discusse
@3#. WT(t) is a window function to take into account possib
different resolutions inI T(E).

A widely spread choice foruf(0)& is a minimun uncer-
tainty harmonic oscillator coherent state (\ is set equal to 1
throughout this paper!

Gr0,P0~r !5)
j

S 1

ps j
2D 1/4

expF2~r j2r j
0!2

2s j
2 G

3exp@ iP j
0~r j2r j

0!#, ~3!

where (r0,P0) represents the coordinates and conjugate m
menta of a suitable phase space point along the selected

For bounded systems, the evolution of this packet can
followed quite conveniently by projection on a complete
of eigenfunctionsun& of the HamiltonianĤ,
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uf~ t !&5e2 iĤ tuf~0!&5(
n

un&^nuf~0!&e2 iEnt, ~4!

where $En% is the corresponding set of eigenvalues. In o
case the billiard eigenstates have been computed using
scaling method@15#.

Regarding the smoothing functionWT(t) one has many
choices; i.e., ‘‘hat,’’ exponential or Gaussian function
which render sin (x)/x, Lorentzian or Gaussian-type line en
velopes, respectively. In our case we use the Gaussian d

WT~ t !5
e2t2/2T2

T
, ~5!

for which the spectrum takes the form

I T~E!5
1

~2p!1/2 (
n

u^nuf~0!&u2exp[2T2(E2En)2/2]. ~6!

The center of the initial wave packet defined in Eq.~3!
will follow for some time the classical PO on which it wa
launched, with the dispersion rate evolving according to
Lyapunov exponent of the orbit@4#.

In a second step@9#, a wave function highly scarred by th
PO can be constructed very efficiently by considering
average ofuf(t)& along the dynamics generated by the P
during a given amount of time, usually taken of the order
the PO period. Let us remark the importance of this l
requirement, since if the packet is allowed to evolve fo
very long time, so that due to the chaotic character of
dynamics it has the opportunity to sample all the availa
phase space, just the~complicated! eigenfunctions of the sys
tem will be obtained. The corresponding expression for
localized wave function corresponding to an energyE0 ~usu-
ally taken as the center of one of the bands appearing in
low-resolution spectrum generated byuf(0)&) reads as fol-
lows:

ucE0&5
1

2pE2`

`

dt eiE0tWT~ t !uf~ t !&

5
1

~2p!1/2 (
n

un&^nuf~0!& exp[2T2(E02En)2/2].

~7!

Phase-space representations for the wave functions
scribed in this section can be constructed in a number
different ways. In this paper we will follow the procedur
described in Ref.@16#, which relies on the use of norma
derivatives of the wave functions evaluated at the bound
of the billiard. On this boundary, Birkhoff coordinates@17#
(q,p) are used to define both classical and quantal Poinc´
surfaces of section such thatq is the arc-length coordinate
andp5p• t̂/upu is the fraction of tangential momentum. Th
coherent states necessary to construct this represent
~Husimi functions@18#! are then defined as
0-2
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Gq0p0~q!5S 1

ps2D 1/4

expF2
1

2s2
~q2q0!2G

3exp@ ip0~q2q0!#. ~8!

This expression corresponds to a boundary wave packe
point (q0,p0) in the surface of section; representing a boun
off a given boundary point with a specific tangential mome
tum. Then, for a wave function with normal derivative on t
boundaryc(q) ~extended periodically to the real line!, the
corresponding Husimi function is given by

H~q0,p0!5u^Gq0p0uc&u2. ~9!

III. TOPOLOGICAL CHARACTERISTICS
OF THE LOCALIZED WAVE FUNCTIONS

The system that we have chosen to study is a particl
mass 1/2 moving in a desymmetrized stadium billiard w
Newman boundary conditions on the symmetry axes~only
even-even parity wave functions will then be considere!.
The radiusr is taken equal to unity and the enclosed area
11p/4. This system is known to exhibit a great degree
chaoticity, both from the classical and quantal points
view.

In this case, and due to the symmetry of the proble
symmetry adapted initial wave functions should be used;
corresponding expression being given by

^x,yuf~0!&5Gx0,y0,P
x
0 ,P

y
01G2x0,y0,2P

x
0 ,P

y
01Gx0,2y0,P

x
0 ,2P

y
0

1G2x0,2y0,2P
x
0 ,2P

y
01c.c. ~10!

is obtained by imposing Newman boundary condition at
symmetry axes.

We consider the dynamics dominated by the horizon
PO, running along thex axis withy50. Accordingly, we use
for our study a symmetry-adapted Gaussian wave pa
@Eq. ~9!# with centers defined by the phase-space po
(x0,y0,Px

0 ,Py
0)5(1,0,k,0) and width sx5sy51.603/k1/2,

wherek is the usual wave number. The corresponding au
correlation function for a packet with an energy at the cen
of E53600, for which the period of the horizontal PO
equal toT051/30, is shown in Fig. 1. As can be seen, tw
main peaks exist att.0.016 and 0.033, respectively, the fir
one being substantially lower than the second. After that,
correlation function becomes very complicated. The relat
intensity of the two peaks can be easily explained if o
takes into account that the initial coherent state that we
using is the sum of two packets, launched with opposite v
ues of the momentum. The two packets first separate,
being scattered by the vertical axis and the other by the
cular hard wall of the billiard, so that when they first retu
to the initial point, at a time roughly equal toT0/2, they have
picked up different phases. This gives rise to the first~small!
recurrence peak inuC(t)u. Afterwards, the two component
continue moving, colliding with the circular and vertic
walls, respectively. In this way, when some time later, at
.T0, they return again close to the initial point, both arri
06622
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with approximately the same collisional phase, this givi
rise to the second, more pronounced peak in the autoco
lation function.

Let us consider next the localization of the wave functio
obtained with the method described in the previous sec
@see Eq.~7!# for different values of the smoothing time. W
chooseT50.01, 0.03, 0.06, and 0.1, in order to cover a ran
of values smaller and greater thanT0. The results are shown
in Fig. 2, where we present the corresponding squared w
functions, Husimi based quantum sufaces of sections,
the associated portions of the spectra generated fromuf(0)&.
Three comments are in order.

In the first place, the wave functions in configuratio
space~top tier! appear localized along the PO, presenting
number of nodesm in agrement with the value obtained from
the Bohr-Sommerfeld quantization condition

k5
2p

L S m1
n

4D ~11!

when applied to the spectral peaks~bottom tier!. For the
horizontal PO,L54 and the Maslov indexn53.

In the second place, and much more importantly, in
localized wave functions it is clearly observable the dist
tion in the structure induced by the self-focal point. A di
cussion of this effect can be found in Ref.@4#. This is a very
important point, and is a consequence of the fact that th
functions have been defined in such a way—averaging o
the motion along the orbit—that they are not only located
the right position of configuration space, but contain a
information on the dynamics of the system in the vicinity
the PO. This is more clearly seen when examining the pha
space picture of these functions, i.e., middle tier of Fig.
There, it is observed that the probability density do not j
localize over the fixed point corresponding to the scarr
orbit, but it is also spread significantly along their manifold

Finally, this structure over the manifolds changes as
value ofT is increased, giving the original packet the oppo
tunity to explore more and more of the dynamics induced
the PO. Indeed, we see in Fig. 2 that forT50.01, well before
the first peak inuC(t)u, the quantum surface of section a
pear essentially localized on the fixed phase point co

FIG. 1. Modulus of the autocorrelation function correspondi
to a symmetrized wave packet@Eq. ~9!# initially centered on the
horizontal periodic orbit of the desymmetrized stadium billiard w
Newman boundary conditions on the axes at an energyE53600.
The radius is taken equal to 1, the enclosed area 11p/4, and the
mass of the particle 1/2.
0-3
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FIG. 2. ~Top! Localized~squared! wave functions calculated using Eq.~7!, ~middle! Husimi based quantum Poincare´ surface of section,
and~bottom! spectra (I ` as a stick spectrum andI T in solid line! for different values of the smoothing time,T: ~a! 0.01,~b! 0.03,~c! 0.06,
and~c! 0.1 atE053700, corresponding to the autocorrelation function of Fig. 1. The invariant manifolds of the horizontal periodic orb
also been drawn superimposed in the middle pannel.
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sponding to the horizontal PO, with just some probabil
sticking out of this region along the manifolds~also plotted
in the figure!. For T50.03 this latter effect is more pro
nounced, and the pattern along the linearized part of
stable and unstable manifolds is fully developed. At the sa
time, the corresponding low-resolution spectral envelo
I T(E) ~continuous line in the bottom tier! define, with in-
creasing precision, the clump of eigenstates contributing
this scar@9#. Past this time, i.e., forT50.06, well beyond the
first ~true! recurrence of the horizontal PO, the origin
packet has had the opportunity to enter into the truly non
ear part of the periodic trajectory, exploring regions of pha
space far apart from the fixed point, where the dynam
flux gets more complicated. However, we see that the a
aged wave function is well confined on the manifolds, ev
following the sharp kinks that they present. This proce
continues forT50.1, value at which the localized wav
function appears covering practically all these invaria
structures of phase space. In this case the resolution in
spectra is higher, and the corresponding spectral enve
define several bands, four in our case. These hig
resolution bands@7# correspond to the interaction with othe
POs of longer periods, as will be discussed in the next s
tion. The signatures of these longer POs are seen in the
figuration space plots.

Another aspect of this problem that is worth consider
is how the process described above is affected when the
06622
e
e
s

to

-
e
l
r-
n
s

t
he
pe
r-

c-
n-

n-

sition to the semiclassical limit is considered. For this p
pose we have repeated the previous calculations, launc
the packet from the same point as before but with differ
values of the energy. The results are shown in Fig. 3. In it
present the localized wave functions, Husimi based quan
Poincare´ surfaces of section, and spectra forE05400 and
T50.1 @column ~a!#, and also forE0540267 andT50.01
@column ~b!#. These values of the smoothing times corr
spond to the periods of the horizontal PO at the selec
energies, so that these are compared to those in Fig. 2~b!. As
can be seen, the structure exhibited by these function
essentially the same, if one takes into account the fact tha
length features scale ask21/2. This scaling is the origin of the
better definition of the focalization effect existing in th
configuration-space wave functions at higher energies.

Using Gutzwiller trace formulas, similar smoothed wa
function has recently been calculated@19#, also showing that
the invariant hyperbolic classical structure is contained
quantum mechanics. In this case no dynamical informat
was used, with the result that many more~of the order of
10 000! states were needed in the summation in order to
the same kind of localization that we are showing in th
paper.

IV. DYNAMICS OF THE LOCALIZED WAVE FUNCTIONS

In this section we investigate the dynamics of the loc
ized wave functions described in the previous section, w
0-4
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LOCALIZATION PROPERTIES OF GROUPS OF . . . PHYSICAL REVIEW E 63 066220
the purpose of disentangling the complexity of the quant
dynamics in the problem that we are considering. As sta
in the Introduction, our aim is to provide an explanation
the quantum dynamics of highly chaotic systems in terms
classical invariant structures.

In Fig. 4 we present the autocorrelation function calc
lated using the~nonstationary! localized wave functions@Eq.

FIG. 3. ~Top! Localized ~squared! wave functions calculated
using Eq.~7!, ~middle! Husimi based quantum Poincare´ surface of
section, and~bottom! spectra (I ` as a stick spectrum andI T in solid
line! for: ~a! E05400 and T50.1, and ~b! E0540 267 andT
50.01. The invariant manifolds of the horizontal periodic or
have also been drawn superimposed in the middle pannel.
06622
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~7!# of Fig. 3~a! and Fig. 2~b!. The results of part~a!, corre-
sponding toE05400 andT50.1, show a series of recur
rences at time intervals approximately equal to 0.38. In e
of them, practically all the initial probability is recovered
and the process shows no evidence of dispersion up to
times considered in our calculations. This phenomenon
already been discussed in Ref.@12#, where Gaussian wave
packets ‘‘stretched’’ along the horizontal PO were used, a
necessary conditions for the existence of revivals were giv
As indicated before, in our case we use initial functions t

FIG. 4. Modulus of the autocorrelation function correspondi
to localized wave functions calculated for:~a! E05400 and T
50.1, and~b! E053700 andT50.03.
FIG. 5. Snapshots of the dynamical evolution in phase space of the localized wave function corresponding to Fig. 3~a!. The manifolds of
the horizontal orbit are plotted in solid line. The linearized manifolds of the orbits~1!, ~2!, ~3! and~4! of Fig. 6 are included in white lines
~in the case that the Husimi function is localized on them!.
0-5
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WISNIACKI, BORONDO, VERGINI, AND BENITO PHYSICAL REVIEW E63 066220
are better adapted to the dynamics of the orbit, thus show
an improved revival behavior. In this respect, it is importa
to note that, opposed to which it was found in@12#, our
functions show revivals, in this wavelength regime, for
ample range of energy values and also for other POs.

From the quantum-mechanical point of view these rec
rences are easy to interpret, since they are the result o
beating frequency originated from the two~almost exclusive!
eigenstate contribution to the initial packet~see spectrum in
the bottom part of Fig. 3!. On the other hand, at the classic
level, the phenomenon is more difficult to understand.
further investigate these recurrences from this point of vie
we show in Fig. 5 a series of snapshots in phase space c
ering the period of time elapsed up to the first recurrence
ucE0&. Notice that due to the symmetry of the figure we ha
only plotted one half of the complete phase space of
billiard. To help interpreting this figure, the position of th

FIG. 6. Some periodic orbits of the desymmetrized stadium
liard related to the horizontal one. See text for details.
06622
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fixed points and associated manifolds, corresponding
some short POs related to the horizontal one, have also b
included. These orbits are presented in Fig. 6. For the sak
clarity, the labeling of the POs was not included in Fig.
but it can be found in Fig. 7.

In the first three images of Fig. 5 we see how the origin
probability density distribution elongates, stretching alo
the unstable manifolds of the horizontal PO and contract
along the stable ones. Afterwards, the process contin
populating the regions around the fixed points correspond
to orbits~3!,~4! and~1!,~2! @20#, so that att50.127–0.169 a
noticeable accumulation of probability around these poi
has taken place. Notice also the effect of the flux along
stable manifolds of these POs, which att50.127 is narrow-
ing the elongated shape of the distribution along some s
cific lines, and att50.169 has split the packet in sever
pieces. Att50.211 this process reaches its maximum, a
the probability remaining in the initial region is practical
zero. After this point, the evolution continues in a simil
way with the probability returning gradually to the vicinit

l-

FIG. 7. Fixed points and associated manifolds of some perio
orbits in Fig. 6. The unstable~thick full line! and stable~thick
dashed line! manifolds of the horizontal periodic orbit are also re
resented.
FIG. 8. Snapshots of the dynamical evolution in phase space of the localized wave function corresponding to Fig. 2~b!. The manifolds
of the horizontal orbit are plotted in solid line. The linearized manifolds of the orbits~5! and ~6! of Fig. 6 are included in white lines att
50.213.
0-6
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LOCALIZATION PROPERTIES OF GROUPS OF . . . PHYSICAL REVIEW E 63 066220
of the initial point, although obviously this time following
path going along the stable manifolds. This second hal
the dynamics takes place following the same series of in
mediate steps.

In Fig. 4~b! the autocorrelation function for the initia
state of Fig. 2~b! is shown. In this case the recurrence patte
is much more complex, but it is nevertheless noticeable
the existence of a fairly good number of recurrences in wh
the overlap with the initial distribution is greater than 50%
The difference with the example presented in Fig. 4~a! is
clear. In this case, the initial wave function is formed by
substantially greater number of contributions@see the associ
ated spectrum at the bottom of Fig. 2~b!#, and then the prob-
ability that all of them get in phase is much smaller. T
corresponding evolution in phase space is presented, u
the first big recurrence att.0.47, in Fig. 8. At this higher
energy we see that the mechanism for the dispersion of
probability density is practically the same, although the
exist certain differences worth commenting. In the fi
place, the time scale for the dispersion is obviously fas
i.e., compare the extent of the evolution in the first snaps
at t50.059 with the third one att50.127 of Fig. 5. In the
second place, the probability distribution appears in this c
much more localized on the participating invariant classi
structures for all values of time considered. Finally, at cert
values oft, the probability shows peaks that localize on ne
POs, not important for the dynamical evolution atE05400
shown in Fig. 5. For example, att50.213 the probability
density localizes on orbits~5! and~6! of Fig. 6. This effect is
not unexpected, since it is reasonable to admit that as
increase the energy, going towards the semiclassical li
more POs are necessary to explain the quantum dynami
our system, as discussed in Ref.@6#.

V. SUMMARY AND CONCLUSIONS

The introduction of Gutzwiller’s trace formula@2# pro-
vided a method to understand the quantum mechanic
classically chaotic Hamiltonian systems in terms of POs.
main drawback is the exponential growth in the number
orbits involved as the Heisenberg timeTH increases, and
many efforts have been devoted to the development of
summation techniques that improve its convergence.

Our work considers an alternative approach, initiated w
cs

sta
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Refs.@6,7#, based on the use of special functions well loc
ized on a few POs and its manifolds, the number of wh
grows only linearly withTH . To construct these localize
functions we have used the method described in Ref.@9#,
based on the dynamics of a coherent wave packet aver
along a given PO and its neighborhood.

In this paper we have studied in detail some import
characteristics and properties of these nonstation
scarred functions in the case of the horizontal PO in
desymmetrized Bunimovich stadium billiard, a paradigma
example of chaos. In particular, we have considered how
localization properties, both in configuration and pha
space, of these functions calculated at energiesE0 close to
the Bohr-Sommerfeld quantization conditions vary with t
averaging timeT. Our results show that the probability den
sity in phase space extends along the manifolds of the s
ring PO, even when the associated dynamics have left
linear regime. In the second place, the transition to the se
classical limit has also been investigated by simultaneou
changingE0 andT. As it takes place, all length features g
better defined, for example, the focal points correspondin
the hyperbolic structure around the fixed point. Finally, w
have also studied the dynamics of these nonstationary w
functions. When the corresponding probability density
phase space is followed a dispersion along the manifold
observed. In this process a building up of probability pea
takes place on a few POs related to the original one~the
horizontal PO in our case!. The recurrences in the corre
sponding autocorrelation function can be very important, a
we have even shown one example in which they are part
larly pronounced.

To conclude, we think that this work provides valuab
information that can help in the disentanglement of the qu
tum mechanics of very chaotic Hamiltonian systems in ter
of simple classical structures.

ACKNOWLEDGMENTS

This work was partially supported by PICT97 03-0005
01015, SECYT-ECOS~Argentina!, and DGES~Spain! Un-
der Contracts Nos. PB96-76, PB98-115, and BMF2000-4
D.A.W. gratefully acknowledges support from CONICE
~Argentina! and AECI ~Spain!.
,

ev.
@1# M.C. Gutzwiller, Am. J. Phys.66, 304 ~1997!; H.-J. Stöck-
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